实验所用板子为altera DE2板子,FPGA为Cyclone II:EP2C35F672C6,quartus版本为13.0
1.管脚信息
[11:0]DRAM_ADDR : address
DRAM_BA_0 : bank address 0
DRAM_BA_1 : bank address 1
DRAM_CAS_N : column address strobe
DRAM_CKE : clock enable
DRAM_CLK : clock
DRAM_CS_N : chip select
[15:0]DRAM_DQ : Data
DRAM_LDQM :lower byte data mask
DRAM_UDQM : upper byte data mask
DRAM_RAS_N : row address strobe
DRAM_WE_N : write enable
2.实验流程
1)建立工程
2)建立初始顶层文件
module work ( CLOCK_50, // On Board 50 MHz KEY, // Pushbutton[3:0] SW, // Toggle Switch[17:0] LEDR, // LED Red[17:0] DRAM_DQ, // SDRAM Data bus 16 Bits DRAM_ADDR, // SDRAM Address bus 12 Bits DRAM_LDQM, // SDRAM Low-byte Data Mask DRAM_UDQM, // SDRAM High-byte Data Mask DRAM_WE_N, // SDRAM Write Enable DRAM_CAS_N, // SDRAM Column Address Strobe DRAM_RAS_N, // SDRAM Row Address Strobe DRAM_CS_N, // SDRAM Chip Select DRAM_BA_0, // SDRAM Bank Address 0 DRAM_BA_1, // SDRAM Bank Address 1 DRAM_CLK, // SDRAM Clock DRAM_CKE // SDRAM Clock Enable);input CLOCK_50; // On Board 50 MHzinput [3:0] KEY; // Pushbutton[3:0]input [17:0] SW; // Toggle Switch[17:0]output [17:0] LEDR; // LED Red[17:0]inout [15:0] DRAM_DQ; // SDRAM Data bus 16 Bitsoutput [11:0] DRAM_ADDR; // SDRAM Address bus 12 Bitsoutput DRAM_LDQM; // SDRAM Low-byte Data Mask output DRAM_UDQM; // SDRAM High-byte Data Maskoutput DRAM_WE_N; // SDRAM Write Enableoutput DRAM_CAS_N; // SDRAM Column Address Strobeoutput DRAM_RAS_N; // SDRAM Row Address Strobeoutput DRAM_CS_N; // SDRAM Chip Selectoutput output DRAM_BA_0; // SDRAM Bank Address 0output DRAM_BA_1; // SDRAM Bank Address 0output DRAM_CLK; // SDRAM Clockoutput DRAM_CKE; // SDRAM Clock Enableassign LEDR = SW;endmodule
3)编译并导入管脚信息
4)建立Qsys
CPU: NiOS II/e
ram: total memory size 12288bytes
jtag_uart: default
sdram_controller: DE2板子上的SDRAM大小为8M
接线图
修改CPU reset位置,自动生成地址,generate
将nios_ii.qsys文件添加入工程中
5)生成pll始终分频,将输入SDRAM的始终延时3ns(延时?前移?)
加入pll ip核,只需修改这两处
6)完成硬件代码
module work ( CLOCK_50, // On Board 50 MHz KEY, // Pushbutton[3:0] SW, // Toggle Switch[17:0] LEDR, // LED Red[17:0] DRAM_DQ, // SDRAM Data bus 16 Bits DRAM_ADDR, // SDRAM Address bus 12 Bits DRAM_LDQM, // SDRAM Low-byte Data Mask DRAM_UDQM, // SDRAM High-byte Data Mask DRAM_WE_N, // SDRAM Write Enable DRAM_CAS_N, // SDRAM Column Address Strobe DRAM_RAS_N, // SDRAM Row Address Strobe DRAM_CS_N, // SDRAM Chip Select DRAM_BA_0, // SDRAM Bank Address 0 DRAM_BA_1, // SDRAM Bank Address 1 DRAM_CLK, // SDRAM Clock DRAM_CKE // SDRAM Clock Enable);input CLOCK_50; // On Board 50 MHzinput [3:0] KEY; // Pushbutton[3:0]input [17:0] SW; // Toggle Switch[17:0]output [17:0] LEDR; // LED Red[17:0]inout [15:0] DRAM_DQ; // SDRAM Data bus 16 Bitsoutput [11:0] DRAM_ADDR; // SDRAM Address bus 12 Bitsoutput DRAM_LDQM; // SDRAM Low-byte Data Mask output DRAM_UDQM; // SDRAM High-byte Data Maskoutput DRAM_WE_N; // SDRAM Write Enableoutput DRAM_CAS_N; // SDRAM Column Address Strobeoutput DRAM_RAS_N; // SDRAM Row Address Strobeoutput DRAM_CS_N; // SDRAM Chip Selectoutput output DRAM_BA_0; // SDRAM Bank Address 0output DRAM_BA_1; // SDRAM Bank Address 0output DRAM_CLK; // SDRAM Clockoutput DRAM_CKE; // SDRAM Clock Enableassign LEDR = SW;pll pll_u ( .inclk0(CLOCK_50), .c0(DRAM_CLK) ); nios_ii u0 ( .clk_clk (CLOCK_50), // clk.clk .reset_reset_n (KEY[3]), // reset.reset_n .sdram_addr (DRAM_ADDR), // sdram.addr .sdram_ba ({DRAM_BA_1,DRAM_BA_0}), // .ba .sdram_cas_n (DRAM_CAS_N), // .cas_n .sdram_cke (DRAM_CKE), // .cke .sdram_cs_n (DRAM_CS_N), // .cs_n .sdram_dq (DRAM_DQ), // .dq .sdram_dqm ({DRAM_UDQM,DRAM_LDQM}), // .dqm .sdram_ras_n (DRAM_RAS_N), // .ras_n .sdram_we_n (DRAM_WE_N) // .we_n );endmodule8)编译硬件代码,并烧录
9)打开nios II software编写软件代码
10)软件代码
软件代码里,地址信息跳变尝试了每次+1、+2、+4,在+4的情况下得到了正确数据。
推测这一情况与软核为32位系统,SDRAM存储空间为8位空间有关?
有待进一步探究
#include#include"system.h"#include"io.h"int main(){ unsigned int i, j, k; k = 236; //随便写的一个数 printf("Hello from Nios II!\n"); for(i = 0; i<40; i = i + 4){ IOWR(SDRAM_BASE+i, 0, k); printf("SDRAM_BASE+i = %d\t",SDRAM_BASE+i); printf("k = %d\n",k); k++; } for(i = 0; i<40; i = i + 4){ j = IORD(SDRAM_BASE+i, 0); printf("data_%d = %d\n", SDRAM_BASE+i, j); } return 0;}
11)edit BSP -> bulid project -> run as NIOS II hardware烧录软件
3.读写结果
地址跳变每次 i = i +1; 数据读写与想象不同
地址跳变每次 i = i +2; 数据读写与想象不同
;
地址跳变每次 i = i +4; 忽略出现的奇怪的显示,数据读写无误
解决:SDRAM的数据一般占据4个地址,或者8个地址,存在对其的问题,因此地址为应该+4或者4的倍数。